On structural equation modeling with data that are not missing completely at random
نویسندگان
چکیده
منابع مشابه
Missing data techniques for structural equation modeling.
As with other statistical methods, missing data often create major problems for the estimation of structural equation models (SEMs). Conventional methods such as listwise or pairwise deletion generally do a poor job of using all the available information. However, structural equation modelers are fortunate that many programs for estimating SEMs now have maximum likelihood methods for handling m...
متن کاملMissing value imputation on missing completely at random data using multilayer perceptrons
Data mining is based on data files which usually contain errors in the form of missing values. This paper focuses on a methodological framework for the development of an automated data imputation model based on artificial neural networks. Fifteen real and simulated data sets are exposed to a perturbation experiment, based on the random generation of missing values. These data set sizes range fr...
متن کاملA Note on Normal Theory Power Calculation in SEM With Data Missing Completely at Random
We consider power calculation in structural equation modeling with data missing completely at random (MCAR). Muthén and Muthén (2002) recently demonstrated how power calculations with data MCAR can be carried out by means of a Monte Carlo study. Here we show that the method of Satorra and Saris (1985), which is based on the nonnull distribution of the (normal theory) log-likelihood ratio test, ...
متن کاملA New Approach to Estimation of Response Probabilities when Missing Data are Not missing at Random
Often the probability of responding depends directly on the outcome value. This case can be treated by postulating a parametric model for the distribution of the outcomes before nonresponse and a model for the response mechanism. The two models define a parametric model for the joint distribution of the outcomes and response indicators, and therefore the parameters of these models can be estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Psychometrika
سال: 1987
ISSN: 0033-3123,1860-0980
DOI: 10.1007/bf02294365